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Resonant transport in pulsated devices: Mobility oscillations and diffusion peaks
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Diffusion of an overdamped Brownian particle on a symmetric periodic substrate is investigated in the
presence of pulsated perturbations of two kinds: (i) Stepwise lateral displacements (flashing substrate) and (ii)
instantaneous tilts (shot noise). Pulses are applied, as it is often observed, in either periodic or random
sequences with assigned mean (bias) and average waiting time (time constant). For a given bias, both the
diffusion coefficient and the mobility of the particle can be greatly enhanced by tuning the time constant.
Moreover, also depending on the time constant, the mobility can grow negative in (i) or exceed unity in (ii). We

term this phenomenon resonant transport.
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I. INTRODUCTION

Brownian diffusion in a periodic substrate is often associ-
ated with a jittering dynamics which results from (Fig. 1) (i)
model A, instantaneous lateral shifts of the substrate (flash-
ing substrate); and (ii) model B, external kicks corresponding
to instantaneous substrate tilts (shot noise). Both mecha-
nisms have been largely employed to model transport at the
micro-cale and nanoscale [1-3]. Prominent applications of
model A include molecular motors at the cellular level [4,5],
where flashing is caused by power strokes from the chemical
energy source (like the hydrolysis of a single adenosine
triphosphate molecule), tunable optical lattices for cold at-
oms [6-9], where substrate shifts are associated to degener-
ate atomic levels, and electromechanical sieves, e.g., for the
electrophoresis of DNA strands [10-12]. Models of type B
have also been around for a while: Introduced first to inter-
pret the output of classical electronic devices [13], recently
they have been employed to engineer quantum devices sub-
ject to shot noise of either electronic [14] or photonic nature

[15].

A. Model A: Flashing substrate

To best summarize our conclusions, we first formulate the
realizations of models A and B that we actually simulated.
Let x be the coordinate of an overdamped Brownian particle
of unit mass diffusing on the cosine potential

V(x) =d [1-cos(2mx/L)]. (1)

In the following we set, for convenience, d=1 and L=2. In
model A the substrate shifts sidewise over time [16], i.e.,

V(x) — VIx-X(®)], (2)

where the drift X(7) is either a square wave,

X(t)=x02 (- 1)'O(t-1) (3)

L=<t
(zero-bias drift), or a staircase,
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(unidirectional drift). Here ®(x) is a Heaviside step function,
{t;} is the sequence of the switch times, and x,>0 is the step
amplitude or length. We simulated both constant waiting
times, t;,, —t,= 7 for any i (periodic sequence), and exponen-
tially distributed waiting times, with time constant 7=(t;,,
—1;) (random sequence). In conclusion, model A is summa-
rized by the Langevin equation (LE)

x=—sin[x - X(1)] + &(1), (5)
where &(r) is a Gaussian zero-mean noise with autocorrela-

tion function (&(r)&(0))=2kT48(¢), which maintains the sys-
tem at the equilibrium temperature 7.

FIG. 1. (Color online) (a) Resonant diffusion. As the substrate
switches between V_ (dashed curve) and V., (solid curve), in model
A a particle initially at rest in a V_ well (empty green circle) gets
instantaneously activated (red circle) and then diffuses either to the
right or to the left (filled green circles) with probabilities 7. (b)
Negative mobility (model A). As the substrate advances to the right
with average speed vy, the activated particle (red circle) may happen
to preferably roll backwards with 7_> .
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B. Model B: Kicked particle

Model B is defined by the spatial variable transformation
x—y=X(t): Accordingly, the LE (5) becomes

y=—siny+ Fy(1) + &), (6)

where Fy()=-X(r) can be regarded as a shot noise acting
upon the Brownian particle of coordinate y, diffusing in the
static cosine potential V(y). Correspondingly, the zero bias,
(3), and unidirectional drift, (4), are mapped into a sequence
of &like spikes with alternate, F S(t):—2x02,i<,(—1)"&t—t,~),
or equal signs, Fy(f)=-x¢%, -,8(t—1;). Moreover, due to the
linear nature of the transformation x—y, models A and B
have the same diffusion coefficient D. For numerical pur-
poses we computed D for model A, i.e., D=lim, . [(x*(1))

—(x(0))?]/21.

C. Main results

In the current literature [13], the unidirectional drifts of
model A and the unidirectional shot noises of model B are
often characterized in terms of their time averages, respec-
tively, the net drift velocity of the substrate, v,=x,/ 7, and the
net driving force, f,=—x,/ 7, felt by the particle. In fact, this
approach typically holds good for macroscopic devices,
where 7 is negligible with respect to the device response
times. On the contrary, we show below that the interplay of
time-pulsated perturbations and spatial periodicity may
strongly affect particle transport in a small device. By tuning
T at constant bias, v, or f;, we observed the following:

(a) Model A. Negative mobility dips with w,={x)/v,
<0, indicating particles that drift with average velocity op-
posite to the substrate drift.

(b) Model B. Excess mobility peaks with ug={(y)/f;>1,
implying that, for an appropriate 7, shot noise can push par-
ticles faster than in the absence of substrate barriers (in
which case ug=1 [17]).

(c) Correspondingly, excess diffusion peaks with D > kT,
which appear to anticipate both the dips, (a), and the peaks,
(b), of the mobility curves. [In our notation the diffusion
coefficient of a free Brownian particle (i.e., for V=0) is kT.]

(d) Finally, in both models, for zero bias (v,=f,=0) and
an appropriate 7 interval, we observed a remarkable resonant
diffusion effect, also with D >kT.

Properties (a)—(c), presented in Sec. III and property (d),
anticipated in Sec. I, can be regarded as manifestations of a
resonant transport mechanism controlled by the time con-
stant of the pulse sequence. The persistence of this effect in
the presence of continuous drifts X(¢) is briefly discussed in
Sec. IV.

II. RESONANT DIFFUSION AT ZERO BIAS

We start now analyzing the results of our simulations for
the processes (3) and (4) at zero bias. In Fig. 2 we display
D/kT versus 7 at different temperatures. The pulse sequences
are periodic in panel (a) and random in panel (b). The reso-
nant nature of the curves D(7) is apparent in both panels,
although more prominent for periodic sequences.
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FIG. 2. (Color online) (a) Resonant diffusion D/kT vs 7 for an
unbiased pulsated substrate (same for models A and B). The square
wave X(7) is periodic in (a) and random in (b). The simulation
parameters k7" and x, are reported in the legend. Crosses and loz-
enges in (a) are the relevant analytical predictions for 7—0 and 7
— oo, respectively (see text). The dashed lines in (a) represent the
optimal diffusion law (7) for x,=/2. Two data sets from (a) (blue
symbols) have been reported in (b) (empty symbols) for the reader’s
convenience.

We interpret such an effect as a new instance of the so-
called resonant activation phenomenon, originally demon-
strated in bistable systems [18-20].

For exceedingly large 7, say, 7— o, Brownian diffusion
achieves its asymptotic regime, (x*(r))—{x(f))>=2D()t, irre-
spective of the applied perturbation X(f). The coefficient
D(0) thus coincides with the diffusion coefficient in the
static, unbiased cosine potential V(x), namely, D()
=kTu(d), where u(d)=[I,(d/kT)]* is the relevant mobility,
expressed in terms of the modified Bessel function I,(x) [17].

In the opposite limit, 7— 0, the diffusion process takes

place in the effective potential V(x), obtained by time aver-
aging either the sidewise switches X(¢) (model A) or the
kicks F4(¢) (model B). Upon implementing the vibrational
mechanics scheme utilized in Refs. [21,22], one concludes

that V(x) is still a cosine potential, but with rescaled ampli-
tude d —d cos xj. As a consequence, for vanishingly small 7,
D(0)=kTu(d cos xg). Our analytical estimates for D(0) and
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FIG. 3. (Color online) Diffusion coefficient D vs x; (a) and 1/kT
(b) for different 7 and vanishing bias (model A). Other simulation
parameters: k7=0.12 in (a) and xy=7/3 in (b). The D(x,) peaks in
(a) are symmetric and periodic with period 7. The dashed lined in
(b) are our predictions (7) with 7. given in Ref. [13] (see text).

D(c0) are also reported in Fig. 2(a). Note that, at variance
with D(e), D(0) sharply depends on x,. In particular, D(0)
=D(x) for any x, and D(0)=kT (free diffusion) for x,
=r/2. Moreover, the unbiased LE (5) and (6) are invariant
for xo— xy+ 1, as explicitly shown in Fig. 3(a).

The D(7) curves bridge the two limits D(0) and D() by
going through a broad resonance peak. Such excess diffusion
peaks can be explained also by means of a simple argument.
Let us consider, for instance, a substrate switch from V_(x)
=V(x+xy) to V,(x)=V(x—x,) in model A. A particle ini-
tially sitting at a minimum of V_(x), now finds itself kicked a
distance 2x, to the left from the corresponding minimum of
the shifted V,(x), as sketched in Fig. 1(a). In the overdamped
regime, one can then introduce the splitting probabilities for
the particle to relax toward the nearest V,(x) minimum to
either the right, 7,(x,), or the left, m_(xy)=1-,(xy). The
continuous particle dynamics (5) is thus mapped into a dis-
crete random-walker process with [13]

12
D(7) = - m, ()1 = 7 (xo)]. (7)

In the present case L=2m and analytical expressions for
m,(xp) can be easily obtained as shown in Sec. 9.1 of Ref.
[13].

This law fits well the decaying branch of our D(7) curves.
In Fig. 2(a) an explicit comparison is shown for the optimal
choice xy=m/2, corresponding to 7. (xy)=1/2. In Fig. 3(b)
we plotted D as a function of 1/kT for xo=m/3 and two
values of 7. The Arrhenius-like 7 dependence of the resonant
diffusion branches is entirely due to the 7 dependence of
m,(xp) appearing in Eq. (7). In particular, the resonant D
peaks get sharper and sharper as one lowers T.
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Finally, as to be expected, a resonant D peak occurs at
around the smallest time constant, 7, for which the optimal
diffusion law (7) applies. Indeed, the random walker scheme
leading to that law assumes implicitly that 7 is no smaller
than the relaxation time of a kicked particle towards the near-
est potential minimum, so that, in our notation, 7z~ L/d
=2 [17].

The resonant diffusion effect illustrated in Figs. 2 and 3
should not be mistaken for the damped D oscillations in-
duced by periodic bimodal [23] or trimodal additive symmet-
ric forces [24] applied to a Brownian particle in a periodic
potential. In Ref. [24] D/kT oscillations are reported for con-
stant tilt amplitudes, F|,, as a function of the tilting time, ¢,. In
the notation of model B, (6), such finite-time tilting pulses
are replaced here by instantaneous kicks of strength x,
=Ft,. As a consequence, the damped D oscillations reported
in Ref. [24] must be regarded as the counterpart of the peri-
odic oscillations of D versus x displayed in Fig. 3(a) (damp-
ing being due to the finiteness of #,). In this case, as well as
in Ref. [23], we are in the presence of a commensuration
effect between pulse strength x, and spatial periodicity of the
substrate L, whereas resonant diffusion is rather controlled
by the waiting time between consecutive kicks.

III. EXCESS MOBILITY AND DIFFUSION AT FINITE
BIAS

We investigate now models A and B under the action of a
unidirectional pulse sequence (4). In model A, the substrate
drifts to the right with average speed v,=x,/7, while in
model B, the shot noise has negative mean, f;=—v,. Owing
to the transformation, y=x—X(#), connecting the two pro-
cesses (5) and (6), the relevant mobility functions, w4 5, obey
the identity w,=1-up (whereas, as mentioned above, D is
the same). This means that excess peaks of uy correspond to
negative dips of u,. Of course, in the absence of a substrate
up=1 and u,=0 for any choice of X(z) [17].

In Fig. 4 we illustrate the bias dependence of D for dif-
ferent step lengths x,. To demonstrate the symmetry of pro-
cess (5) under the transformation x,— —x, (mirror reflection)
and xy— xy+L, with L=21r (step-substrate commensuration),
we displayed our diffusion data versus the reduced bias
[xo]/ 7, with [xy]=x, mod(2). As a result, the data sets for
xo=m/3 and 77/3, and xy=2m/3 and 47/3 collapse on two
distinct curves.

The overall properties of such numerical curves can be
summarized as follows. They all peak for [x,]/ 7 in the vicin-
ity of the substrate depinning threshold d (namely, the least
force required to drag a noiseless particle over a substrate
barrier). Diffusion enhancement is a general property of
Brownian motion in a biased potential [25-27]. Being a
threshold effect, diffusion enhancement peaks are associated
to steps in the mobility curves (also shown in Fig. 4). (In the
notation of model B the connection with the earlier literature
is more apparent.) However, decreasing [x,]/ 7 at constant x,
means increasing 7, so that, at variance with the setup of
Refs. [25-27], the pulsated nature of the drive now starts
playing a role. Indeed, the linear tails, D«[x,]/ 7, of Fig. 4
correspond to the linearly decaying branches (7) displayed in
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FIG. 4. (Color online) Transport on a sinusoidal substrate traveling with velocity v,=[xy]/ 7, where [xy]=xy mod(27) (model A). The
unidirectional step sequence is periodic in panel (a) and random in panel (b). x, was chosen to demonstrate the symmetry and under
transformations xo— —x, and xo— xo+27 (see text). The relative diffusion coefficient is represented by circles and the mobility uy
=(x)/v, by dashed curves. For xy=1r the mobility is zero within our numerical accuracy.

Fig. 2(a). For [xy]/7—0 (not shown) all numerical curves
eventually approach the asymptotic limit D(c0) for the zero-
bias case. Finally, we stress that all of the above applies both
to periodic (main panel) and random pulse sequences (inset),
alike.

To illustrate the role of the drift time constant, in Fig. 5
we display our data for u, [panel (a)] and D [panel (b)]
versus 7 at constant bias v,. The curves u,(7) exhibit
damped oscillations with negative minima. This result may
sound surprising if one considers that the substrate moves in
the positive direction with v,>0. However, when the sub-
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FIG. 5. (Color online) Transport enhancement induced by a pe-
riod pulse sequence with fixed bias v;=xy/ 7 (model A) and varying
7. The mobility drops in (a) correspond to sharp diffusion peaks in
(b). The dashed curve in (b) locates the maxima 7%/27 of the reso-
nant D.

strate advances by one step length x,= 7 to the right, a par-
ticle initially at rest is likely to get kicked into the well
immediately to the left from its initial position and, thus,
may drift with negative net velocity [Fig. 1(b)]. This mecha-
nism applies for x, close to (2m+1)m, m=0,1,2..., so that
negative u, dips are expected for 7= (2m+1)7/v,, in close
agreement with our numerics. Extending this argument to
model B also explains the observed excess up peaks (not
shown).

In Fig. 5(b) we displayed the corresponding curves D(7)
for the same 7 range as in Fig. 5(a): The coincidence be-
tween D peaks and u, drops is apparent, in agreement with
the analysis of Ref. [25]. Most remarkably, the peaks for
relatively large 7 fall on the envelope curve L?/87, with L
=21, as one guesses by inspecting the linear D tails in Fig. 4.
Such tails shift upwards on increasing x, from 2mm to (2m
+ 1)1, so that the diffusion maxima in Fig. 5(b) must occur
for xo=(2m+ 1). The envelope curve drawn there is simply
the optimal diffusion law (7) with 7,[(2m+1)7]=1/2.

IV. CONCLUDING REMARKS

We remark here that certain resonant transport features
can be detected also in the presence of a continuous pulsated
drift, for instance, the zero-bias sinusoidal function

X(1) = xy cos(Qr + ¢p). (8)

A variation of model B subject to a sinusoidal drift with
tunable bias has been investigated in Ref. [28]. As mentioned
at the bottom of Sec. III, the smoothness of the X(7) wave
form degrades the oscillations of the diffusion coefficient: At
zero bias the D peaks in Fig. 3(a) are replaced by the kind of
damped oscillations earlier reported in Ref. [24].

Most notably, in both models A and B, resonant curves of
D versus 7=27/() emerge at zero bias and low tempera-
tures (Fig. 6). The resonance peak is less pronounced with
respect to that obtained by simulating a rectangular wave
form (3). Moreover, the 7' branches of Fig. 4(a) are also
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FIG. 6. (Color online) Resonant diffusion D/kT vs =2/}
for a harmonically pulsated substrate at low temperatures. X(z)
given by Eq. (8) with xy=27 and ¢=0. Crosses and lozenges are
the relevant analytical predictions for 7— 0 and 7— o, respectively,
like in Fig. 2(a) (see text).

suppressed. Such curves are a signature of the diffusion en-
hancement induced by a periodic drive [29]. Similarly to Fig.
2(a), all D(7) curves approach the free diffusion limit,
D(0)=kTu(d), and the vibrational mechanics limit, D(0)
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=kTul[Jy(xy/Q)d], respectively for extremely low and high
modulation frequencies. [Here, Jy(x) denotes a zeroth-order
Bessel function [22].]

Finally, we remark that the combination of two (or more)
harmonic components with commensurate frequencies, like

X(t) =X COS(Qlf + ¢1) + X COS(ta+ ¢2), (9)

with Q,/Q,=m/n, m,n=1,2,..., induces an additional rec-
tification effect (not shown here), the magnitude and sign of
which depend on the phase difference ¢,—¢; (harmonic
mixing [30]).

In summary, a particle diffusing on a pulsated periodic
substrate, for appropriate combinations of the amplitude and
frequency of the pulses, can synchronize its dynamics with
the pulse sequence, which allows an effective control of the
particle delivery (i.e., of both its speed and dispersion) [31].
When utilized in particle separation, such delivery control
technique can be exploited to increase the separation speed
and selectivity [2]. Preliminary estimates indicate that the
simplest experimental setups to demonstrate the resonant dif-
fusion mechanisms introduced here, are the optical potentials
for colloidal particles investigated in Refs. [32,33]. Biology
inspired devices, especially designed to control the transport
of magnetic vortices in superconductors, can also provide an
ideal playground for resonant diffusion experiments [34].
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